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ABSTRACT

This paper discusses the dispersal of two interacting biological species.

The dispersal - a response to population pressure alone - is modelled by the

degenerate parabolic system

ut - [u(u+v)x]x

vt k[v(u+v)x]x

in conjunction with an initial prescription of the individual densities u

and v together with standard zero-flux boundary conditions. We demonstrate

here the following interesting feature of this model: segregated initial data

give rise to solutions which are segregated for all time. •
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SIGNIFICANCE AND EXPLANATION

-VW-considersAb---a mathematical model for interacting biological species
7.. 1.

that disperse as a response to population pressure. We demonstrate here an

interesting feature of the model: species which are initially segregated

remain segregated for all time.,~-
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ON INTERACTING POPULATIONS THAT DISPERSE TO AVOID CROWDING:
PRESERVATION OF SEGREGATION

M. Bertsch , M. E. Gurtin , D. Hilhorst , and L. A. Peletier

1. Introduction- -

Consider two interacting biological species with populations

sufficiently dense that a continuum theory is applicable, and

assume that the species are undergoing dispersal on a time scale

sufficiently small that births and deaths are negligible.

Granted these assumptions, conservation of population requires

that

u t - -div(uq),
(1.1I) ":

vt  -div(vw),

where u(x,t) and v(x,t) are the spatial densities of the

species, while the vector fields q(x,t) and w(x,t) are the

corresponding dispersal velocities.

We restrict our attention to situations in which dispersal

is a response to population pressure and express this mathematically

by requiring that the dispersal of each of the species be driven

by the gradient V(u+v) of the total population, u+v. We

therefore assume that

Department of Mathematics, University of Leiden, Leiden, The
Netherlands.
Department of Mathematics, Carnegie-Mellon University, Pittsburgh,
PA 15213, USA.
CNRS, Laboratoire d'Analyse Numfrique, Universitg de Paris-Sud,
91405 Orsay, France. . -

1For a single species this type of constitutive assumption was
introduced by Gurney and Nisbet [11, Gurtin and MacCamy (2].
Sponsored by the United States Army under Contract No. DAAG29-80-C-
0041. This work was supported in part (Gurtin) by the National
Science Foundation under Grant No. DMS-8404116.
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q -klV(U+V),

(1.2)

w -k2 (u+v),

with klk 2  strictly-positive constants, and this leads to

the system
2

ut = k div[uV(u+v ) ,

(1.3) 6

vt = k div[vV(u+v)].t 2

For convenience, we limit our attention to one space-dimension

and we choose the time-scale so that k 1 . Then writing k = k2

we have the system

ut= [u(u+v)l1x'

(1.4)

vt = k[v(u+v) xIx

We shall suppose that the two species live in a finite habitat

= -,L) , L > 0;

that individuals are unable to cross the boundary of 0,

u(u+v) x = v(u+v) x = 0 for x ±L, t > 0; (1.5)

and that the two populations are prescribed initially,

The system (1.3) with k2 = 0 was studied by Bertsch and

Hilhorst 13] and by Bertsch, Gurtin, Hilhorst, and Peletier [4].
2Gurtin and Pipkin 15]. See also Busenberg and Travis [61. An
alternative theory was developed by Shigesada, Kawasaki, and
Teramoto 17]. This theory is discussed in [41 and 15].
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u(x,O) = UoX), v(x,O) = vo(X) for x E Q. (1.6)

0 0

In this paper we shall study the problem (1.4)-(1.6)

for initial data which are segregated in the sense that, for S

some a ,

u0 (x) m 0 for x > a, v0 (x) 0 for x < a. (1.7)
0

As our main result we establish the existence of a solution

in which the two species are segregated for all time. This

result is quite surprising as it is independent of the

2
initial distributions of the species and of the ratio k of

their dispersivities.

* . 'Actually, Gurtin and Pipkin [5] gave a particular solution to
11.2) - corresponding to initial Dirac distributions - in which
the two species are segregated for all time. Being a specific
solution, it is not clear from this result whether "preservation
of segregation" is a generic property of the equations (1.4).

2Granted they are segregated.

-3-
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2. The problem Results.

We shall use the notation

m + +
=R (0,c0) , Q = x R xT (0,T),

and, for any function f: Q -. ,

Q(f) interior[(x,t) E 0:. f(x,t) > 0).

Our problem consists in finding functions u(x,t) and v(x,t)

on Q such that

in Q, (2.1)

Iu (u+V) v (u+v) 0 on U1 x IR + (2.2)

U (x, 0) u u(x), v (x, 0) V v(x) in 2. (2.3)

We shall assume throughout that:

(Al) k > 0, u0,v0  0, uo,vo E C(n);

(A2) the initial data are segregated, so that (1.7) holds

for some a E 0*;

1(A3) each of the sets [x: u 0 (x) > 0] and L'x: v 0 (x) > 0JS

is connected.

The purpose of this paper is to establish -for such segregated

initial data - solutions of (1) which are segregated for all time.

1We make this assumption for convenience only.

-4-

4-:'P



Proceeding formally, let (u,v) be a segregated solution. Then

the sets Q+ (u) and 0 v) are disjoint; hence (assuming

u'v > 0)

urn0 in Q +vM, vT M 0 in +Q(u),

and, by (2.1),

M (uu ) in Q+ (u), v- k(vv ) in Q +v). (2.4)

Thus where positive u and v obey porous-media equations.

As is well known, solutions of the porous-media equation may not

be smooth, and for that reason it is advantageous to work with a

weak formulation of Problem (M). This is reinforced by the

observation that (I) is a free-boundary problem and conditions

at the free boundary are generally indigenous to a weak formulation,

not required as separate restrictions. (The free boundary is the

set

= [Q (u) U 60,(v) n Q (2.5)

which separates the region with u(x,t) > 0 from that with

u(xt) = 0 and separates the region with v(x,t) > 0 from

that with v(x,t) = 0.)

With this in mind, assume for the moment that (u,v) is a

smooth solution of (I). If we multiply (2.1) by an arbitrary

smooth function *(x,t), integrate over QT' and use (2.2)
T-9

Cf., e.g., the survey article of Peletier [8].

-5-
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and (2.3), we arrive at the relations

Su u(T) (T) u 0 ) Cu u5 [u* 3-

(2.6)

IV (T) (T) v v 0 )] [v*~ -vuv

pwhere we have used the notation u(t) - u(-,t), etc. We shall

use (2.6) as the basis of our definition of a weak solution.

Definition. A (weak) solution of Problem (I) is a pair

(u,v) with the following properties:

Mi U, V E L (Q T) for T > 0; u tM ,v tM E L (0) for t > 0;

2 1(u+v) E L (0,T; H (s) for T > 0;

(ii) u(t) ,v(t) > 0 almost everywhere in 0 for t > 0;

(iii) u and v satisfy (2.6) for all *E C ()and T > 0.

If, in addition, there is a continuous function [: 0,00) ~

such that, given any t > 0,

v(x,t) =0 for -L < x < ~)
(2.7)

u(x,t) =0 for (t) < x < L,

then (u,v) is segregated. We will refer to as a separation

curve.

L -6-



Remarks:

1. The terms u(u+v) and v(u+v) in (2.6) are defined

* as follows:p

[~v (u+v) 3 if U> 0

12 0if U 0

and similarly for v(u+v) x Then, since u/(u+v) < 1, while

I(u+v)L2 ]~ E L 2 (0T) we have

*u(u~v) x E L 2 (QT) for T > 0.

2. The integral identities (2.6) imply that, as t 40,

U uM) u 0 V v~t v 0  weakly in L (11),

i.e., that

[U - 1ut-0 * 01 Jj v(t)-v 01 0 (2.8)

0 0

for all '~E L 2(2) . To verify (2.8) we simply apply (2.6) with

E C (75)(independent of time) . This yields (2.8) for *E C(T
2and hence - using a standard argument - for q E L ()

3. The choice 1 in (2.6) leads to the global

conservation laws

fu(t) = U0 , J'v(t) =fv 0  (2.9)

for t > 0.

-7-
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We close this section by stating our main results; the

corresponding proofs will be given in Section 3.

Theorem 1. Problem (1) has exactly one segregated solution.

Remark. It is important to emphasize that we have established

uniqueness only within the class of segregated solutions. Thus

we have not ruled out the possibility - for segregated initial

...

data - of solutions which mix. We conjecture that this cannot

happen.

Theorem 2. Let (uv) be the segregated solution of

Problem (1). Then:

(i u +f v E C (U);
1 +

T a .i u is ion (u ) a caemphce in at w v t s

xxx

weiavn t ruved clahpssialy in fo sgv

1 .-..

Tha ois, m is Cet onu v) an theeregatidsflie u f (uu

Probem (). Ten: ...
pointwise.

. .........

pointwise.. I ..

: ::::.:::: ::.:...::. ,. ..: : : ... -.,--...- -. . . -.. . ... -. .-.-. .. ... . .- . . ,.. . . . .
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Our next theorem is concerned with the free boundary 3

(cf. (2.5)). In view of (2.4), the portion of 3 along which

the two species are not in contact should have properties DS

similar to those of the free boundary for the porous-media problem:

Pt (Ppx)x in Q,

(PM) PPx = 0 on 6 x 3+

Lp(x,O) = P0 (X) in 0.

As is known, when the initial data have the form

P0 (x) > 0 in (al,a 2 ), P0 (x) = 0 otherwise,

-L < a < a2 < L, the free boundary Q n + Q(p) consists of

two continuous, time-parametrizable curves, one emanating from

al, one from a2. If b(t), 0 < t < Tb, designates the curve

from a1  (resp., a2) , then:

(F1 ) b(t) b(0) on (0,Tb) for some Tb E (0,Tb];
1#

(F2 ) b(t) is C and strictly decreasing (resp., strictly

increasing) on (Tb,Tb) 

(F 3) b(Tb) E ..

This discussion should motivate the following definition in which

"FB" is shorthand for "free boundary".

Cf., e.g., the review article by Peletier (8]. See also

Aronson and Peletier 19].
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Definition. An F~q curve is a continuous function

b: [O,t b 0

Ct. may be o) . Moreover:

Mi b is internal if tb

(ii) b is left Cresp., right) up to time T b E 11h

if (F 1 ),(F 2 ) hold;

(ifi) b extends to 60 if b is right or left up to time

tb with tb < 00, and b (t;) E.n

Let b: tOt)~~ be an FE curve and let q: Q IR. Then P

FB conditions with velocity q hold from the left (resp., right)

on b if given any t E (C),t) at which b is C,

b

b'(t) qg(b (t). ,t) (reasp. , b (t) q (~b(t) t)).L

Theorem 3. Let (u,v) be the segregated solution of Problem

M I. Then there exist FE curves b , b IC ,Cv with the

following properties:

W i bu < Cu i Cv < b with bu and Cu forming theu- v v -

boundary of Q~ C u) in Q, b , and C vforming the boundary

of Q~ Cv) in Q;

(ii) b and b extend to 60, with b uleft and b

right;

lHere each inequality is assumed to hold at those times at which
the underlying functions are defined.



(iii) Cu and Cv are internal, and there is a time

T E [0,00) such that C is righ -E tm T, C is
- ghvttm

left up to time T, and

CtUM COOC) C(t) on [TFO0)

with CE c1 (To); in addition,

(u+v)(Ct),t) > 0 for t > T; (2.10)

(iv) FE conditions with velocity -u~ hold fromt the

right on buf from the left on C U

(v) FE conditions with velocityI -kv~ hold from the

right on Cv, from the left on b .

Remarks.

1. The curve C marks that portion of the free boundary on

which the two species are in contact. By (2.10), the functions

u and v suffer jump discontinuities across C; more precisely

for t > T,

U(C(t) 't) > 0, U(Ct) + t) 0 ,

VC(Ct),t) -0, v(Ct) +,t) > 0.

Further, Ciii)-(v) of Theorem 3 in conjunction with the continuity

of u+v imply that, for t > T,

u(Ct) , 0) V(I t)+ 0,

u (CCt), t) =kv (CM~)~ t) =-C' Ct) (2.11)x x

-12-
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(t) ~

- - -(t 

L - - -

Figure 3. The functions u(*,t) and vC-,t)
at a fixed time t > T.
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2. The results (iv) and (v) assert that each of the "fronts"

bu(t), Cut), CV(t), by(t) propagates with the velocity of

individuals situated on it; condition (2.11) is the requirement

that at the contact front C(t) the two species move together.

Our final result concerns the asymptotic behavior of segregated

solutions. Proceeding formally, suppose that uoo(x), vm(x) is an

equilibrium solution of Problem (I). Then (2.1) and the boundary

conditions (2.2) yield

UoolUcx+ vcc)'= vco(Uco+ vM)' = 0 in 0;

hence

(u+Vc)2 =0 in 0

and

uoo + v, constant.

If and voC are segregated with habitats in [-L, x- "

and [x., L], respectively, then there exists a constant p

such that

-15--.
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if 'x E(-L, XC)

u.$xP if x - xUCOW = 1
LO if x E (x.a, L) (2.12)

0 fx E (-L, YtJ

moreover, if the equilibrium solution NO,,, vo) is reached from

the jiitial data (u01v 0) the conservation law (2.9) implies

that

U+V (2.13)

where

U=.f u0  V- v. (2.14)

That these formal calculations are indeed correct is a

consequence of the following theorem.

Theorem 4. Let Cu,v) be the segregated solution of (I).

Then, as t 00,

the latter two limits being pointwise in \[. Here

C(t) is the contact front (cf. Theorem 3), while X', UCX.

and vc are defined in (2.12),(2.13).

-16-



3. Reformulation of the problem

Let (uwv) be a sufficiently smooth segregated solution of

Problem (1) and define

x
z(x,t) -- U + u u(y, t) + v (y, t)]dy; (3.1)

z(x,t) represents the total population, at time t, in the

interval E-L,x). in view of the conservation laws (2.9),

z (-L, t) -- U, z( (t) , t) -0, z(L,t) -V, (3.2)

where U and V are defined in (2.14), so that separation curves

S(t) (cf. (2.7)) are level curves z(C(t), t) -0; in fact,

z(x,t) <50 for x ( (3.3)

z(x,t) > 0 for x > (.

Further, if we differentiate (3.1) with respect to t and use

(2.1), 12.2), and (2.7), we find that

zz for x < t

fo x xt)

cZ )={~k : (3.4)
tI

-k17- x orx> M

.R Tus dfinng c IR R b

S, a <
.......... )
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we may use (3.3) to reduce (3.4) to the single equation -

c(z)t z

x~ _x

0

on all of 0. Therefore, if we write

x
z0(x) = -U + J, (U0+V0 ), (3.6) S

-L

we are led to the following problem for z(x,t):

cz t - xzxx in Q,
1Z) Z (-L, t) = - z (L, t) = V, t > 0,..-.--.l

z(x0) z0 (x) in Q.

We assume, for the remainder of the section, that c

and z are defined ( (3.5) and (3.6), and that (Al)-(A3)

are satisfied.

Problem (i) under hypotheses more general than ours, has

been analyzed in [10]. We shall simply state, without proof,

a version of the results of [10) appropriate for our use. With

this in mind, we first define what we mean by a solution; in that

definition, and in what follows, zcjx) designates the unique

equilibrium solution of (1:

z0(x) =(U+V) (x+L)= L )-2L

-18- -
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Definition. A (weak) solutioni of Problem M~ is a function

* z E C([O,co); W1'"(C)) with the following properties:

Ui) z(-,t) z. E 11(0) for t > 0; -

2(ii) z tE L (0 T for T)>0;

* (iii) for all E C1 ) with *-0 on aD x (0,00)

and all T >0,

.f c(zT)*(T c(z M)*() .f[c(z)*t ( z~ (3.7)

Theorem 5 ((10]). Problem (M has exactly one solution z.

Moreover:

M( z E COQ) with zx 0;

Ci) c(Z)t z zX~" classically in Q(zx)

(iii) a~ (z, is the union of the sets

: jx't) E 0: -U < z(x, t) <03

02 JCx,t) E Q: 0 < z (x, t) < VIJ,

and there exist free-boundary curves b1~b 2 "1 C 2  such that

()-(Cv) of Theorem 3 hold with Q (u) ,Q (v) ,b ,b IC I

replaced ty 01,02,bl,b 2, 1 1 c2 p respectively, with u+v in (iii)

replaced ty z and with ux and v x in (iv) and (v) replaced

-19-
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(iv) z t) zoo in C1(2 as* t 40;

(v) given any x0 E Q2 with z (x) > 0, there exists

a continuous function 9: [0,00) - lsuch that0

moreover, E C (0,00) and, for t > 0,

C'(t) -Kz x (9(), 0

where KC 1 or k according as zo (x 0) < 0 or z 0(xO) > 0.

The next result asserts the equivalence of Problems I and -

(Z) and, when combined with Theorem 5,

yields the validity of Theorems 1-4.

Theorem 6. Problems (I) and () are equivalent:

Mi Let z be a solution of Problem (Z) and define u

and v on

u(x,t) = z Cx,t), v(x,t) =0 if z(x,t) < 0,
* 0

u(x,t) = 0, v(x,t) = zX(x,t) if z(x,t) > 0, (3.8)

u(x,t) =v(x,t) = 1~ t if z (x,t) 0

Then (u,v) is a segregated solution of Problem (I).

(ii) Conversely, let (u,v) be a segregated solution of Problem

(I) and define z on (3.1). Then z solves Problem (L).

-20-
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Proof.

i) Let z be a solution of ( and define (u,v) through

(3.8). By Theorem 5(i), the only nontrivial step in showing that

(u,v) solves (I) is proving that u and v satisfy the integral

identities (2.6). We shall only verify the first of (2.6);

the verification of the second is completely analogous.

For convenience, we write b - bI , - CI for the FB

curves established in Theorem 5, and we extend b(t) continuously

to [0,00) by defining b(t) - -L for t > t b. By Theorem 5(iii)

and (3.8),

supp u(t) - [b(t), C(t)].

Choose e > 0 sufficiently small and let b t) and C (t),

respectively, be the level curves z =-U + c and z = -c

(cf. Theorem 5(v)). Then, by Theorem 5(ii) and (3.8),

ut - (uux)x  classically and v E0 must both be satisfied

in a neighborhood of any (x,t) such that b (t) < x < (t)
C- C

and t > 0. Further, Theorem 5(v) yields

bl(t) -Uxlb (t),),0 C£' t) -Uxlce(t) , t)
CC CX

for t > 0. Thus, choosing 6 > 0, the identity

t

f f'(,r)dr = f(t) - f(6)

applied to

-21-
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E (T)
f(r) u co uer)

b E(T)

yields, when E C 65),0

C ( t ) C C -r )S ~)IMt - 5 U(6)W(6) =5 £ (u*-uuv
bE (t) b (6) 6 Lb . e0(39

Next, since b~ (tM 4 b(t) and C~ (t) I CMt as c 4 0 for each

t E [Q,), it follows from Lebesgue's dominated convergence theorem

that (3.9) holds with b and C~ replaced by b and C. Also,

since zxE C(Q) , it follows that (6 -* Z in C(M2 as

6 4 0 and

u6 u(6) 4 (6) -. CIO) u W() as 6 4 0.

b(6) b(0)0

Thus a second application of Lebesgue's theorem yields

Jt)UMth(t) - 0jO 40 (0) (" -U U+() T) )dxldT,
b(t) b() 0 LbX1u~uuv

and, since u~t) 0 on i\(b(t), C(t)), the first of (2.6)

follows.

(ii) Let (u,v) solve (1). We are to prove that z -defined

by (3.1) - solves (T. Choose T > 0. Then u,v E L 0TQ and

hence, by (2. 9) and the definition of 26-, z(*t) - zcE H (a2)
0

Note also that, since zX =u + v and (u+v)2 EL 2(O,T;Hl (a))
it follows that
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zE L (0,T;H(1) (3.10)x

where z2  (z X)2

our next step will be to establish the integral identity (3.7).

Thus choose X E C 65) with =0 on aO x (0,00~) and take

x
*(x,t) = J (y,t) dy

in (2. 6), in view of (2. 7) , (3.1), and (3.6), the result is

7)' z, (T)#(T) 7) Z; z,(0) T S S(z c 1 2~z)x~xt
-L -L0 -L

(3.11)
L L T L k2
f Z, (T)4'(T) - .'Zoo0) f f [ z *t - (zx)x )(dxdt.
(T) C(O) 0 9(t) xt X

Since x, V(-L,t) - 0, and X(*L,t) =0, while z(x,t) satisfies

(3.2) and (3.3), if we integrate (3.11) by parts and then add the

first of the resulting relations to k times the second, we arrive

at (3.7) (with * replaced byx)

We have only to show that ztE LA (QT But this follows from

(3.10) and the fact that, by (3.7), c(z)t =1 2x~ in the sense

of distributions on Q T' This completes the proof of Theorem 6.
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4. Remarks. Open problems. Conjectures.

1. Problem (I) with nonsegregated initial data is open. Here

the problem does not reduce to a free boundary problem for a single 0

scalar field z, as one must solve the system (2.1) in regions of

interaction (cf. Remark 2).

2. The system (2.1) with k 1 is far simpler to analyze.

There the total density p = u + v satisfies (PM) with initial

data .p0 = u0 + v0, and once P is known (2.1) are linear

hyperbolic equations for u and v:

p
ut = (Ux)x  vt = (VPx)x

(cf. [51). Using this reduction one can prove uniqueness within

the class of all solutions (as opposed to all segregated solutions), and

one can show that solutions which begin mixed remain mixed for all

time, including t =0. (Details will appear elsewhere.)

3. Assume, in place of (1.2), that the dispersal of each

of the species is driven by a weighted sum of the densities; i.e.,

that (in one space-dimension),

q -(kllu + klV)

(4.1)
w = -(k2 1u + k2 2V)x (4

with all

kij > 0. (4.2) 9

-24-
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This constitutive assumption, when combined with the conservation

law (1.1) and corresponding zero-flux boundary conditions, leads

to the problem I

ut = [u(k 11 u + k12VlxIx
in Q, (4.3)

Vt = [v(k 2 1u + k2V)xI

u(k 1 1 u + k12v) x = v(k2 1u + k 2 2v) x = 0 on 6l IR ,

u(x,0) = u0 (x), v(x,0) = v0 x) in Q.

This formulation is greatly simplified if we define new independent

variables

a (x,t) = kllu(x,t), P(x,t) = k1 2V(x,t)

and new constants F--_

k22 k12k21k = -- P = k _--_ -_12-11 22

for then (I) reduces to

at [aL+Olxx
in Q, (4.4)

t k[P(pa + p) x I

LCL a+ 0) x (0 (P + 0)x= 0 on a2 x IR +

calx,O) = (lx) , (x,O) = x) in Q

with

C k 1 , kv
0 =  ' 0 =k12 0

-25-

- •-.

I,-.



4. Consider Problem (I), or equivalently (IV). The terms on

the right side of (4.3) involving second derivatives are

uk, uk1, u

()((4.5) 

Vk21 vk2 21 \vxx-

Writing A = A(u,v) for the coefficient matrix in (4.5) and

confining our attention to u > 0, v > 0, we conclude from (4.2)

that there are exactly three possibilities for the eigenvalues

-X 2 of A, namely:1 "2

(i) Xi > 0, X2 > 0; (ii) Xl 0, X2 > 0; (iii) XI < 0, x2 > 0.

Moreover, writing K for the matrix

K = (kij),

it is not difficult to verify that

(i) X 1 > 0, X2 > 0 < det K > 0,

(ii) X = 0, 2 > 0 < det K = 0,

(iii) XI < 0, X2 > 0 < det K < 0.

We consider the three cases separately. S

Case (i) (det K > 0). Here the system (4.3) is degenerate parabolic,

as it is parabolic when u > 0 and v > 0, but not when uv 0.

Because of this property, we expect that initially-segregated 0

solutions will eventually mix. We also expect them to mix for

another reason. Indeed, assume to the contrary that Problem (in)

-26-
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has a segregated solution (u,v). For such a solution we would

expect the two populations to spread until they meet, and then

to remain in contact along a contact front C(t) (cf. Theorem 3

and Remark 2 following it). From (4.2) one might expect that

both kllu + kl2v and k21u + k2 2v would be continuous across

, and hence both zero along C, a condition which cannot generally

be satisfied (cf. Remark 1 following Theorem 3). We are therefore

led to the following conjecture: for det K > 0 there are no

segregated solutions of Problem (M). In this regard it would be

interesting to look at (I) with 
1

K ( 1)

c > 0; in particular, the limit E 0.

Finally, within the context of the biological model, the

off-diagonal elements of K drive the segregation of the species,

while the diagonal elements, by themselves, result in the usual

diffusive behavior. Since det K > 0 yields k11k22 > k12k21,

it would seem reasonable that in this case the two species

ultimately mix.

Case (ii) (det K = 0). Here . = 1 and Problem (IY) is identical

to Problem (I). Thus all of our results generalize trivially to

populations whose interaction is described y (4.1) with K

singular.

iThis choice of K arose in discussions with R. Rostamian.
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For the case det K - 0 we would like to call the system (4.3) ...

degenerate parabolic-hyperbolic. Indeed, if we set w u c + 0, . -

then, assuming k > 1, (4.4) can be written as

wt  [[w + (k-1)A]Wx ,

At =k(w)Wx -

i.e., as a system composed of a degenerate-parabolic equation and

a hyperbolic equation. The presence of this last equation makes

the discontinuity of u and v at the contact front less

surprising.

In this case one can speak of "passive segregation": if

the species start segregated, they may remain segregated, as we

have seen in the previous sections, and if they start mixed,

then, when k = 1, they remain mixed for all t > 0 (see

Remark 2 of this section).

Case (iii) (det K < 0). The system (4.3) is now not parabolic, "

and Problem (nI) is probably not well posed. Since the off-diagonal

terms in K dominate in this case, one might expect a tendency

towards segregation, even in a mixed population.

•S

-28-
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5. The system (2.1) with k -. 0 was studied in (3] and [4].

There vix) a v (x) and the problem reduces to solving (2.1)11

(2.2)1, and (2.3). in this case, even with segregated initial

data, solutions eventually mix, an apparent contradiction in

behavior. The limit k 0 in Problem (1) would therefore be

interesting.
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